Un sistema de inteligencia artificial fue el primero en alertar sobre el coronavirus
800 Noticias
El pasado 31 de diciembre un algoritmo desarrollado por una start up canadiense, especializada en monitorear la dispersión de enfermedades infecciosas, ya había descubierto el brote del coronavirus en Wuhan, China, y avisado de la noticia a sus clientes.
Ese mismo día, el gobierno china había comunicado la existencia de 27 casos a la Organización Mundial de la Salud (OMS), aunque el organismo no anunció la existencia del brote hasta diez días después. El virus, que provoca síntomas parecidos a la neumonía, se originó posiblemente por la exposición de los vendedores a animales vivos en el mercado de mariscos de la mencionada ciudad.
Una de las habilidades más extendidas de la inteligencia artificial es su capacidad para analizar cantidades ingentes de datos y encontrar patrones. Y eso es precisamente lo que hace el sistema propuesto por BlueDot, la start up que ha desarrollado el algoritmo y que se dedica a hacer informes para distintos organismos oficiales en Estados Unidos de forma sistemática desde hace años.
Su estrategia para hacer una predicción sobre la dispersión del virus se basa en recopilar y analizar información de noticias publicadas en webs informativas y periódicos en más de 30 idiomas diferentes.
A través del procesamiento del lenguaje natural, que permite a la inteligencia artificial entender y producir textos, “el algoritmo lee noticias publicadas en medios locales donde se mencionan casos de gripe, muertes sin una explicación aparente y síntomas que no se ubican en un diagnóstico concreto, tanto en humanos como en animales”, explica Alfonso Valencia, profesor de la Institución Catalana de Investigación y Estudios Avanzados (Icrea) y director del departamento de ciencias de la vida en el Barcelona Supercomputing Center. “La minería de textos ha evolucionado mucho en los últimos años y se ha perfeccionado”, cuenta Valencia.
Básicamente, es un sistema para seguir las noticias en Internet sobre los casos coincidentes que vayan surgiendo. La dificultad reside en que estos algoritmos sean igual de eficientes en diferentes idiomas.
“La clave de cómo lo han podido hacer es porque hay dos nuevos sistemas de traducción que son muy eficientes, basados también en machine learning, y es posible que los estén usando”. Valencia es prudente al pronunciarse porque la start up no ha dado detalles técnicos sobre el proceso.
A preguntas de EL PAÍS, BlueDot asegura por correo electrónico que no puede contestar a la prensa porque está enfocada en prestar servicio a sus clientes.
Leer más en El País